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Graphic rule for non-steady-state enzyme kinetics 
and protein folding kinetics* 

K u o - C h e n  C h o u  

Computational Chemistry, Up john Research Laboratories, 
Kalamazoo, MI 49001, USA 

When going more deeply into the principles of enzyme action as well as protein 
folding, one is often confronted with transient process systems. Based on the recent 
progress in graphic methods of enzyme kinetics, in this article a graphic rule is described, 
which can be used to deal with transient processes occurring in both enzyme-catalyzed 
reaction systems and protein folding systems. Introducing the graphic method to non- 
steady-state systems can raise the efficiency of the calculations and provide an intuitive 
picture, helping the analysis of the mechanisms concerned. For instance, using the 
current graphic rule, one can immediately write out the phase concentrations of enzyme 
species or protein folding states. Calculation work such as setting up differential equations, 
making Laplace transformations, and expanding determinants, which is both tedious and 
liable to error, is completely avoided. The mathematical proof of the non-steady-state 
graphic rule is given in the appendix. 

1. Introduction 

Thirty-five years ago, King and Altman [1] proposed a graphic method for 
deriving the steady-state rate equations in enzyme kinetics. Introducing graphic 
methods to enzyme kinetics can make the calculation more convenient and intuitive, 
and hence has proved to be very useful in biochemistry. As a matter of fact, the 
King-Altman method has been so widely employed that it has been written into 
many biochemistry textbooks. However, the King-Altman method can only be used 
to deal with very simple enzyme-catalyzed systems. When an enzyme-catalyzed 
reaction system is a little more complicated, the calculation will become almost 
formidable without the use of a computer. Furthermore, in analyzing enzyme- 
catalyzed mechanisms, it is crucially important to find the analytical solutions, not 
only the numerical solutions (cf., e.g. refs. [2-5]).  Therefore, various graphical 
methods [6-23] have been proposed in an attempt to improve and develop the 
original King-Altman method. All these methods are valid only for steady-state 
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systems. However, when going more deeply into the principles of enzyme action 
as well as protein folding, one is often confronted with transient processes (e.g. 
ref. [24]) which cannot be treated in terms of the conventional graphic methods. 
Therefore, it is highly desirable to present a graphic method that can be used to deal 
with non-steady-state systems. This article is devoted to such a goal. Moreover, the 
algorithm described in this paper can be applied for the creation of a program for 
the analytical solution of  linear differential equations. 

In enzyme kinetics and protein folding kinetics, we often have to deal with 
a special non-steady-state kinetic system called a "compartment system", which can 
be formulated by the following equations: 

n gl 

dei ~_~ kij - ~ kjie j (i = 1, 2, n), (la) dt =el . . . .  
j=l j=: 

~_~e i = e o (lb) 
i=1 

with the following initial conditions: 

e l(t) = e o 1 
el(t) = 0 (i ¢: 1), when t = 0, (2) 

where ei = [Ei]  ( i  = 1, 2 . . . . .  n) is the concentration of the ith enzyme species, with 
el = [El] for that of the free enzyme. The total concentration of the n enzyme 
species is eo, which is a constant. In this article, the concentration of  a reactant X 
is represented by either [X] or just the corresponding lower-case letter x. Obviously, 
for a protein folding system in which there are n different folding states, all the 
above formulations remain valid too. The following equations will not, therefore, 
refer explicitly to the protein folding system since the current formulations will 
always be valid for either of these two kinetic systems. 

As is well known, it is much more difficult and complicated [25-28] to find 
the solution for a non-steady-state system in comparison with the corresponding 
steady-state one. A question is naturally raised: Can we also find a graphic method 
to deal with the non-steady-state system as we did for the steady-state one? The 
answer is yes. As an approach to realize this, let us first perform the Laplace 
transformation for eq. (1) with the initial condition (2), which yields 

s+~_~klj ~ i - ~ . k j i ~ j = 6 1 i e o  ( i = 1 , 2  . . . . .  n), (3a) 
/=1 j= l  

n 

s ~ ei = eo, (38) 
i=1 

where S~i is the Kronecker delta, s is an interim parameter introduced by the 
Laplace transform, 
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ei(s) = I ei(t) exp(-ts) dt, (4) 

o 

and ~i is the phase concentration of Ei. The relation between the phase concentration 
~i and the usual concentration ei can be simply expressed as 

ei = Eel 
ei i~_l~ij, (5) 

where l~ and L-x are the Laplace transformation and inverse transformation operator, 
respectively. 

Below, a graph rule is presented by which one can directly write out the 
phase concentrations according to the directed graph without the need of solving 
eqs. (3) and (4), whose operation is even more tedious and error-prone than that of  
the case of a steady-state system. Once the phase concentrations ~z (i = 1, 2 . . . . .  n) 
are known, the corresponding normal concentrations ei(t) (i = 1, 2 . . . . .  n) can be 
immediately obtained according to the Laplace transform table, available in any 
mathematical handbook. 

2. A graphic rule for calculating the phase concentrations em (m = 1, 2 , . . . ,  n) 

The rule can be illustrated in terms of the following four steps: 
(1) According to the reaction mechanism of a system, draw a directed graph 

G, which consists of vertices and arcs. In such a graph, various enzyme species are 
represented by different vertices, and the interconversion between any two enzyme 
species by an arc with an arrow and weighted by a rate constant to indicate the 
conversion direction and rate, respectively. If kij = 0, then the arc from Ei to Ey is not 
depicted, implying no direct conversion from the ith enzyme species to the j th  one. 

(2) Transform the directed graph G to t~ according to the following procedures: 
To each of  the vertices E m ( m  = 1, 2 . . . . .  n )  add a loop with the weight s + ]~=1 k,q, 
respectively. If there are two or more arcs from one vertex to another identical 
vertex, then condense them into one by adding their rate constants together. 

(3) The graph obtained through the above procedure is called the phase graph 
(~. Thus, the phase concentration ~m for the ruth enzyme species E m is given by 

ern - -  Nm (eo/s), (6) 
5". ~= 1 N i 

where N m c a n  be obtained as follows. From the phase graph (~, find all the subgraphs 
each of which has one, and only one, path from E1 to Era, as well as all the cycles 
and loops that intersect with neither each other nor the path. For each such subgraph, 
multiply all its weights and a sign factor given by 

(-1) c'  , (7) 
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where Cy is the number of  the cycles (not including loops) in the respective subgraph. 
The sum of  all these results will immediately give Nm. When m = 1, however, the 
path from E1 to Em will reduce to a point whose weight, in this case, should be 
assigned as 1 for calculations (e.g., see eq. (12)). 

(4) In order to facilitate checking and to avoid missing any subgraphs, we 
can also predict the number of  subhraphs to be counted. The method is as follows. 
Construct a matrix C = [cij], where 

1, if there is an arc from E i to  Ej in G; 

co = 0, otherwise, 
(8) 

then the number of  subgraphs involved in calculating Nm must be 

n T M  = per C,,,, 1, (9) 

where Cm, 1 is the submatrix obtained by removing the mth row and the first column 
from C, and per Cm,1 denotes the sum of  all terms obtained by expanding the 
determinant of  Cm,1 but taking all the signs of the expanded terms as plus, e.g., 

:):2 

/i i i/ /11/1 10111/ per 1 = per + per = 2 + 1 = 3 
1 

1 

and so forth. Therefore, it is very easy to calculate the number of  the subgraphs in 
terms of  eq. (9) in which the matrix elements are either 1 or 0. 

The mathematical proof of  this rule is given in the appendix. 

3. Examples and discussion 

Let us illustrate the above non-steady-state graphical rule by some examples. 

EXAMPLE 1 

Find the non-steady-state solution for the Michael i s -Menten  mechanism [29]: 

k+l k+2 
E + S  -. " ES .. " E + P ,  (10) 

k_l k_2 

where the concentration of  E is equal to eo and that of  ES equal to 0 when t = 0. 
Let E1 = E, E 2 = ES, k12 = k+l[S], k21 = k_l, k12 = k_2[P], k21 = k+2. According to (1) 
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(a) 
k12 

E E 2 

k21 

(b) 
(k12 + kl~) 

Fig. 1. (a) The directed graph G for the Michaelis-Menten mechan- 
ism as formulated in eq. (10). (b) The phase graph G obtained 
from (a) according to the procedure as stated in (2) of the rule. 

of  the above rule, the Michael is -Menten mechanism of eq. (10) can be expressed 
by the directed graph, as shown in fig. l(a). Following the procedure as described 
in (2) of  the rule, the directed graph G in fig. 1 (a) can be transformed to the phase 
graph (~ as given in fig. l(b). Then, according to (3) of  the rule, it follows 

N 1 = ( - 1 )  0 S + k21 + k21, (1 la) 

N2= ( - 1 )  ° = k12 + k12. (1 lb)  
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Substituting these results into eq~ (6), we obtain 

s + k21 + k~l eo, (12a) 
el = s ( s  + k12 + k21 + kl* 2 + k~l) 

k12 + k~2 
e2 = s ( S + k l  2 +k21 +k;2 +k~l ) eo. 

(12b) 

Using the table of  Laplace transforms (cf., e.g. ref. [30]), we immediately obtain 

k21 + k21 
el(t) = e° k12 + k21 + k12 -I- k~l 

I , k12 + k12 
e2(t ) = e 0 kl 2 + k21 + k12 + k~l 

+ k12 + k12 

k12 + k21 + k12 + k~l 

k12 + k;2 

k12 + k21 + kl2 + k21 

1 
exp[-(kl2 + k21 + k12 + k21 )t][ ,  

(13a) 

) exp[-(kl2 + k21 + k12 + k21)t] . 

(13b) 

Now let us see how to use the check formula of eq. (9). According to the 
phase graph t~ of  fig. l(b) we have 

c:(: :) (14) 

Thus,  it follows from eq. (10) that 

n 1-01 = per C1,1 = [1] = 1, n 1-°2 = per C2,1 = [1] = 1, (15) 

which means that no subgraphs were missed in calculating the phase concentrations 
as illustrated in eqs. ( l l a )  and ( l lb ) .  

EXAMPLE 2 

Consider the non-steady-state kinetics of the following three-state model  of  
protein folding: 

k 1 k2 
D ~ ) X c ) N, (16) 

k_ 1 k-2 

where D represents the denatured and unfold protein species, N the native and 
folded protein species, and X is the intermediate in the pathway between unfolded 
and folded states. Let El = D, E 2 = X, E3 = N, klz = kl, k21 = k_l, k23 = k2, k32 = k_z. 
Then the three-state folding model can be expressed by the directed graph G as 
shown in fig. 2(a). Assume that initially only denatured protein is present, viz., 
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( a )  k12 k23 

k21 k32 

(b) k12 k23 

E~ E2 E3 

(C) k12 k23 

s + k~2 s + k23 S 

Fig. 2. (a) The directed graph for the three-state folding 
model as formulated in eq. (16). (b) The directed graph reduced 
from fig. 2(a) when k12, k~ >> k21, k32. (c) The phase 
graph G obtained from fig. 2(b) according to (2) of the rule. 

el = [D] = e0, e2 = [X] = 0 and e3 = [N] = 0 when t = 0. Here, eo is the total concentration 
of protein. The protein is then subjected to a rapid temperature jump, a sudden 
change in solvent, or some other quick change that causes the protein to fold. To 
simplify illustration, suppose k12, k23 >> k21, k32, which means the tendency of the 
protein towards folding is dominant over its tendency towards unfolding after such 
a sudden change. In this case, the directed graph G in fig. 2(a) can be reduced to 
that of fig. 2(b). According to (1) of the rule, the directed graph G in fig. 2(b) can 
be transformed to the phase graph G of fig. 2(c). It follows thus by (2) of the rule 
that 

::~i~i~!~::~i~:S:~i!i~::~::~::~iiiii::ii~i~i~iii::!i::i!ii~::ii::::~:~i~i::~i~i::::::i~iii!::i!i!~iii~!~i::::~!::ii!~ii~i::i!i~::::i~::~!~!~! 

!i::ii:: • i::i!iiiii!iiiiii!iiiili!i~ ......... ::iiiiiiiiiiiiiiiii!!~: "::~iiiil 
~ 1 ~;~::~:~:;:~:~:~:~:::~::~:::~::::=(S+kE3)S' (17a) 

iiiiii::!iiii::iiiii::i::i!!::iiiiiiii::!::i::ii::::is + k~/:::::!::!::ii::~::~i::!::~ ::i::ii~ 
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::::::::::::::::::•:::::i:i:!:::::::::i:i:!:i:!:!:i:i:i:i:i:i:i:i:i:!:!:•:i:i:i:i:i:i:i8i:18!:•:!:!:!:!:!:i:i:i:!:!:!:i:i. 
iili i ii iiiii ~,~iii! iii!i ii iliii! !i i!i!!i~ i i 
ii iiil ii iiii ii i!i!~! i 

N 2 = ( -  1)° iiiii!i!iiiii?E iiii::iiiiii!iijiiiiiiiiiiiiiiiiii!iE2ii!i!iiiiili!iiii!i!iii!i}~!: k )i!i!ii! = k12s' 
!!iii~iiii~!i!~!~i!iiii!i~i~ii~!iiii~:i:ii!~!:~!i~i:i:i:!:i:!:i:!:i:i:~:i:i:i:i:!:!;~:i:i:i:i:i~i~: S iiiii 

(17b) 

i iiii iii i i !ii i!i ii jiiiiiil 
k12k23. (17c) 

Substi tuting the above results into eq. (6) yields 

1 (s + k23)s (s + k23)s eo = ~ e o ,  (18a) 
e'l = S[$2 + (k23 + k12) S + k12k23 ] eo = s(s + k12) (s + k23) s + k12 

k12 
e2 = eo, (18b) 

(S + k12) (s + k23 ) 

k12k23 
~3 = eo. (18c) 

S(S "t- k12 ) (S + k23 ) 

Using the table o f  Laplace t ransforms (cf., e.g. ref. [30]), we immedia te ly  obtain 
the transient  concentrat ions of  the protein at three different  folding states. The  
solutions may  be classified into the fol lowing two cases: 

(a) When  k12 ~: k23, we have 

el(t) = e-k'2t eo, (19a) 

e 2 (t) - k3--2 (e -k~2t - e -k~3t ) e o, (19b) 
k23 - k12 

I '  ] e3(t) = k23 _ kl 2 (kl2e -/h3t - k23e -kl2t) + 1 eo. (19c) 

(b) When  k12 = k23 = k, we have 

el(t ) = e-~eo,  (20a) 
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e2 (t) = kt e-laeo, (20b) 

e 3 (t) = (1 - e -la - kt e -k* ) e o. (20c) 

From examples 1 and 2, we see that neither the operation of  expanding 
determinants nor the operation of  solving differential equations is needed; we 
can directly write out the transient concentration of  enzyme species or protein 
folding stated just by looking up the Laplace transform table as well as its directed 
graph. A great deal of  complicated and difficult mathematical derivations can be 
avoided. 

An application of the non-steady-state graphic rule in analyzing the mechanism 
of glucokinase slow transition upon of  glucose was reported recently by Lin and 
Neet [24]. 

Appendix: The mathematical  principle of the non-steady-state graphic rule 

First, let us point out that an n x n matrix X = [xij] can be expressed by a 
weighted digraph (i.e. directed graph) G(X) with n vertices (V 1, V2 . . . . .  V,,). The 
method is as follows. I fxl j¢~O ( i ~ j ) ,  draw an arc from vertex Vi to vertex Vj, and 
weight it with xlj; i fx i j  = 0 (i ~:j), do not depict an arc from Vi to Vj. I fx i i  ¢: O, draw 
a loop at vertex Vi, i.e. an arc from vertex Vi to itself, and weight it with xii; i fx i i  = O, 
however, no loop should be drawn at vertex Vi. Through such a procedure, a one- 
to-one correspondence between the matrix and the digraph is established [31 ]. This 
is the essence of  why some calculations relevant to a matrix can be approached 
through the graphic method as well. 

Second, let us prove that for any n x n matrix X = [xij], we have 

det X = ~ (--1) q" f(Gu), (A. 1) 
u 

where Gu is the uth of  those subgraphs each of  which contains all disjoint cycles 
and loops of  G(X), qu is the number of cycles with an even number of  arcs in G,,, 
and f ( G , )  denotes the product of  the weights of  all the arcs in G,.  The proof of  eq. 
(A.1) is as follows. According to the definition of  a determinant, 

det X = ~., sgn a x l j  ~ x 2 A .  . . xnj" , (A.2) 
a 

where a =  { J l , J 2  . . . . .  j,} is a permutation of  {1, 2 . . . . .  n}, and 

1, for even permutation; (A.3) 
sgn cr = -1, for odd permutation. 
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If XljlX2j2...Xnj,, .71: 0, it must  also be equal to the product of  weights of  the 
arcs 

v, vj,, % . . . . .  v. 

in G(X), where each given subscript appears only twice: one is in the initial point  
of~..an arc, andl..., the other is in the terminal point  of  an arc. Consequently,  VIVj,, 
V2Vj2 . . . . .  V,,Vj~ must  correspond to a G~ ofeq .  (A. 1). In other words, there is a one- 
to-one correspondence between the non-zero terms of  de tX and G. (u = 1, 2 . . . .  ) 
of  G(X); i.e. we have 

de tX = ~ s g n o "  u f (G u) ,  (A.4) 
u 

where sgn o'u is the sign which can be determined as follows. As mentioned above, 
eac/,.h G~ (u = 1, 2 / ¢ . . . ) c o n s i s t s  of disjoint cycles and loops. Suppose V/,, Vi, Vi2, Vi2, 
V/yi 3 . . . . .  Vit, VitVi,, Vi, is a cycle formed by I vertices and l arcs in G~. According 
to eq. (A.3), the term xili2xi2i3.., xitil, which is actually the product of  the weights 
of  all the arcs of such a cycle, will contribute a factor of  ( -1 )  t- 1 to sgn 0-~. Therefore, 
if we take all disjoint cycles of Gu into account, we have 

sgn °'u = H (-1)1-1' 
{t) 

where l is the number  of  arcs in each of  the disjoint cycles in Gu. Since 

(A.5) 

-1, when I is an even number; 

(-1)/-1 = 1, when I is an odd number, 
(A.6) 

it follows that 

sgn o'u = ( -1 )  {the number of cycles in G u that have even number of arcs} (A.7) 

Substitution of  eq. (A.7) into eq. (A.4) completes the proof  of eq. (A.1). 
On the other hand, according to the definition of the p e r m a n e n t  of a matrix, 

we have 

p e r  X = ~.~ X l j l X E j  2 . . . Xnj" . (A.8) 
t~ 

In comparison with det X of  eq. (A.2), the only difference is in the sign factor sgn cr 
which appears in det X but not in per X. Therefore, if C is built from G(X) according 
to rule 2(3), it is obvious that 

p e r C  = {the number  of  non-zero terms in detX} 

= {the number  of  G,, in G(X)}. (A.9) 
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Now we can use eqs. (A.1) and (A.9) to prove the rule of  calculating the 
phase concentrations. The phase concentrations are the solutions of  eqs. (3a), (3b). 
However,  the n + 1 equations in eq. (3) are not independent.  The first equation in 
eq. (3a) is equal to eq. (3b) minus all the other equations, i.e. i = 2, 3 . . . . .  n 
of  eq. (3a). Therefore,  instead of  solving eqs. (3a), (3b), we can consider  the 
following equations: 

n 

~_~ ei = eols, 
i=1 

j=1 j=1 

~ U S ,  

where 

(A.10a) 

= 0 ( i  = 2 ,  3 . . . . .  n) .  ( A . 1 0 b )  

according to Cramer 's  rule, the solutions of eq. (A.10) can be expressed as 

Nm (~o/S), (A.11) 

1 

-k~ 2 

-klm 

- k l  n 

1 . . .  1 . . .  1 "~ 

s + Y.~=~k2y ... 0 . . . .  k.2 

-k2m -.. 0 . . . .  k,, m 

-kEn "" 0 "" s+E~__lk,y 

(A.12) 

Observing eq. (A.12), we discover the following: 

(1) According to the relation between terms and graphs as given in eq. (A.1), 
in all the graphs corresponding to Nm there is no arc starting from E,,,. Therefore,  
any cycle containing point Em must  be reduced to a path. On the other hand, in all 
the corresponding graphs, there is no arc ending at the vertex El.  Therefore,  the 
reduced cycle must  be a path from point E1 to Era. This is actually reflected by 
selecting E1 as a starting point to calculate Nm as stated in (3) of  the graphic rule. 
In a particular case, if m = 1, i.e. the vertex E m is the starting point itself, the path 
is further reduced to a point with weight of 1, as implied in eq. (A.12). (Note that 
according to eq. (A.1), if the path is reduced from a cycle with an even number  of  
arcs, then a factor of  ( - 1 )  will be added; if the path is reduced from a cycle with 
an odd number  of  arcs, no such factor should be added.) 

(2) For brevity, all the minus signs before the elements of  Aim in eq. (A.12) 
can be removed through an appropriate adjustment in sign. Such an adjustment,  
combined with ( -1 )  q~ in eq. (A.1) as well as the sign contributed from the path as 
described in (1) of  this section, will eventually lead to eq. (7). 
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(3) Again, from eqs. (A.9) and (A.12) it is obvious that if E1 is selected as 
a starting point, the number of subgraphs to counted for calculating Arm is given by 
eq. (9). 

This completes the proof of the graphic rule for calculating the phase 
concentrations. 
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